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Gaussian Processes: from Prior to Posterior

Training set {xi , yi}ni=1
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Predictive distribution

p(y∗|x∗,X , y ,M) = N (kT (x∗,X )[K + σ2
nI]−1y,

k(x∗,x∗) + σ2
n − kT (x∗,X )[K + σ2

nI]−1k(x∗,X ))
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Marginal Likelihood

log p(y|X ,M) = −1
2

yT K−1
y y− 1

2
log |Ky | −

n
2

log(2π)

where Ky = K + σ2
nI.

I This can be used to adjust the free parameters
(hyperparameters) of a kernel

I Prediction and evaluation of marginal likelihood are all
O(n3)
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Automatic Relevance Determination

kSE(x,x′) = σ2
f exp

(
− 1

2
(x− x′)>M(x− x′)

)
I Isotropic M = `−2I
I ARD: M = diag(`−2

1 , `−2
2 , . . . , `−2

D ) (cf Neal, 1996)
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The Nature of the Underlying Problem

I Complexity of target function (e.g. Fourier spectrum)
I Noise level
I Dimensionality of x space (intrinsic or apparent)
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Approximate GPR methods

I Subset of Data (SoD)
I keep m data points, simply throw away the rest
I select points randomly, or furthest point clustering

(Gonzales, 1985)
I Fully Independent Training Conditional (FITC)

I “absorb” all datapoints onto an m-dimensional predictor
I We choose inducing points U from the training set

kSoR(xi ,xj) = k(xi ,U)K−1
UU k(U,xj)

kFITC(xi ,xj) = kSoR(xi ,xj) + δij [k(xi ,xj)− kSoR(xi ,xj)]

I Local
I Create k data clusters: run GPR in each
I We devised Recursive Projection Clustering (RPC) to

obtain clusters of equal size
I Hyperparameters: joint across all clusters, or separate

I Each method has its associated marginal likelihood
approximation
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I Iterative methods and IFGT
I Use iterative solution of linear system (e.g. conjugate

gradients).
I Approximate each matrix-vector multiply (MVM) using IFGT.
I Slow for predictive variances

I Lots of other methods proposed, including:
I Exploit structure, e.g. Fourier methods for stationary

covariance functions and grid designs
I GPs→ GRMFs (Lindgren, Rue, Lindström, 2011)
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Comparison of space and time complexity

Method Storage Training Mean Variance

Full O(n2) O(n3) O(n) O(n2)
SoD O(m2) O(m3) O(m) O(m2)
FITC O(mn) O(m2n) O(m) O(m2)
Local O(mn) O(m2n) O(m) O(m2)
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Computational phases

hyperparameter learning: The hyperparameters are learned,
by for example maximizing the log marginal
likelihood. This is often the most computationally
expensive phase.

training: Given the hyperparameters, all computations that
don’t involve test inputs are performed, such as
computing (K + σ2I)−1y, and/or computing the
Cholesky decomposition of K + σ2

nI.
testing: Only the computations involving the test inputs are

carried out, those which could not have been done
previously. This phase may be significant if there
is a very large test set.
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Comparing Approximations

I Consider SMSE, MSLL as a function of training or
testing compute time

I Q: How to handle the hyperparameters?
I A: Let each method choose its own
I This is sensible for real-world data, as opposed e.g. to

synthetic data
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Experiments

I Datasets
I SYNTH2 2-d GP; n = 30,543 for training, same for test
I SYNTH8 8-d GP; n = 30,543 for training, same for test
I SARCOS D = 21, n = 44,484, plus 4,449 for testing
I CHEM D = 15, n = 31,536 for training, same for test

I Error measures
I standardized mean squared error (SMSE) on test set
I mean standardized log loss (MSLL) on test set

average p(y∗|D,x∗) over test set, subtract same score for
trivial model which predicts mean and variance of training
set

I Which method do you think will do best?
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IFGT Results

SYNTH2 SYNTH8

CHEM SARCOS

IFGT only provides useful speedups for SYNTH2 12 / 20



SYNTH2

SYNTH8

13 / 20



CHEM

SARCOS

14 / 20



SYNTH2

SYNTH8

15 / 20



CHEM

SARCOS

16 / 20



Results: Conclusions

I SoD dominates FITC wrt hyperparameter learning
I FITC dominates SoD wrt test time
I Both SoD and FITC behaved monotonically with m
I The Local method is more variable, but can win for some

problems and cluster sizes. Non-monotonic time wrt m.
I IFGT only provided a speedup for SYNTH2
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Futher issues

I Subset selection methods (e.g. IVM)
I Mix-and-match, e.g. train hyperparameters with SoD, then

use FITC at test time?
I Lower-level programming to improve Local for small m
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Conclusions

I Assess approximate methods by quality obtained vs
compute time

I New methods should compare to standard baselines (e.g.
SoD, FITC)

I Paper available at http://homepages.inf.ed.ac.
uk/ckiw/online_pubs.html

I Code and data at http://homepages.inf.ed.ac.uk/
ckiw/code/gpr_approx.html

19 / 20

http://homepages.inf.ed.ac.uk/ckiw/online_pubs.html
http://homepages.inf.ed.ac.uk/ckiw/online_pubs.html
http://homepages.inf.ed.ac.uk/ckiw/code/gpr_approx.html
http://homepages.inf.ed.ac.uk/ckiw/code/gpr_approx.html


Carl Edward Rasmussen and
Chris Williams
MIT Press, 2006
www.GaussianProcess.org/gpml

Available free on the internet

20 / 20


