A Framework for Evaluating Approximation

Methods for Gaussian Process Regression

Krzysztof Chalupka, Chris Williams, lain Murray

Institute for Adaptive and Neural Computation
School of Informatics, University of Edinburgh, UK

May 2012

1/20

Gaussian Processes: from Prior to Posterior

Training set {x;, y;} ",

2 2

output, f(x)
output, f(x)
o

-5 -0 5 -5 0 5
input, x input, x

Predictive distribution

p(y*’x*7X7y7 M) :N(kT(x*’X)[K_’_U%/]i‘Iy)
k(xi,x.) + 05 — kT (%, X)[K + 077 K(x., X))

2/20

Marginal Likelihood

1 _ 1 n
log p(y|X, M) = —5y K,y — 5 log |Ky[— 5 log(2r)
where K, = K + o2 1.

» This can be used to adjust the free parameters
(hyperparameters) of a kernel

» Prediction and evaluation of marginal likelihood are all
o(n®)

3/20

Automatic Relevance Determination

kse(x,X') = 0% exp (— %(x —x')TM(x — x))

» Isotropic M = (2]
» ARD: M = diag(¢; 2, 4,2, ..., £5?) (cf Neal, 1996)

0

. 2 2 . 2
input x2 input x1 input x2 input x1

4/20

The Nature of the Underlying Problem

» Complexity of target function (e.g. Fourier spectrum)
» Noise level
» Dimensionality of x space (intrinsic or apparent)

5/20

Approximate GPR methods

» Subset of Data (SoD)
» keep m data points, simply throw away the rest
» select points randomly, or furthest point clustering
(Gonzales, 1985)
» Fully Independent Training Conditional (FITC)
» “absorb” all datapoints onto an m-dimensional predictor
» We choose inducing points U from the training set

ksor(Xi, X;) = k(x;, U)Ky k(U, x;)

Kere(Xi, X;) = Ksor(Xi, X;) + 0j[K(Xi, X;) — Ksor(Xi, X))]
» Local

» Create k data clusters: run GPR in each

» We devised Recursive Projection Clustering (RPC) to

obtain clusters of equal size

» Hyperparameters: joint across all clusters, or separate

» Each method has its associated marginal likelihood
approximation

6/20

» lterative methods and IFGT

» Use iterative solution of linear system (e.g. conjugate
gradients).

» Approximate each matrix-vector multiply (MVM) using IFGT.

» Slow for predictive variances

» Lots of other methods proposed, including:

» Exploit structure, e.g. Fourier methods for stationary
covariance functions and grid designs
» GPs — GRMFs (Lindgren, Rue, Lindstrém, 2011)

Comparison of space and time complexity

Method Storage Training Mean Variance
Full o(r?) on®) O(n) O(n?)

SoD O(m?) O(m?) O(m) O(m?)
FITC O(mn) O(m?n) O(m) O(n?)
Local O(mn) O(m?n) O(m) O(m?)

8/20

Computational phases

hyperparameter learning: The hyperparameters are learned,
by for example maximizing the log marginal
likelihood. This is often the most computationally
expensive phase.

training: Given the hyperparameters, all computations that
don’t involve test inputs are performed, such as
computing (K + ¢2/)~'y, and/or computing the
Cholesky decomposition of K + o21.

testing: Only the computations involving the test inputs are
carried out, those which could not have been done
previously. This phase may be significant if there
is a very large test set.

9/20

Comparing Approximations

» Consider SMSE, MSLL as a function of training or
testing compute time

» Q: How to handle the hyperparameters?
» A: Let each method choose its own

» This is sensible for real-world data, as opposed e.g. to
synthetic data

10/20

» Datasets
» SYNTH2 2-d GP; n = 30, 543 for training, same for test
» SYNTH8 8-d GP; n = 30,543 for training, same for test
» SARCOS D = 21, n = 44,484, plus 4,449 for testing
» CHEM D = 15, n = 31,536 for training, same for test

» Error measures

» standardized mean squared error (SMSE) on test set

» mean standardized log loss (MSLL) on test set
average p(y.«|D, x.) over test set, subtract same score for
trivial model which predicts mean and variance of training
set

» Which method do you think will do best?

11/20

IFGT Results

5000)

MVM time [s] (N

5000)

MVM time [s] (N

10
0
10
W0l @ e.g
——Exact Matlab| X-=¢acp
- IFGT
-4| @ Auto
10
-5 0
10 10 10
Characteristic bandwidth
2
10
0
10
10'2 ————
—*— Exact Matlab
- IFGT
4| 0 Auto
10
-5 0
10 10 10
Characteristic bandwidth

5000)

MVM time [s] (N

5000)

MVM time [s] (N

10
0
10
10
—— Exact Matlab Xemx
- IFGT
.4 | 0 Auto
10
-5 0 5
10 10 10
Characteristic bandwidth
SYNTH8
2
10
R0
0 [- S SV
10 3
2 0
Xemoy
10 —*— Exact Matlab x
- IFGT
_4/|"©" Auto
10
5 0 5
10 10 10
Characteristic bandwidth

IFGT only provides useful speedups for SYNTH2

12/20

SYNTHZ2

SYNTH¢

MSLL

MSLL

4 4
. SoD SoD
2r FITG 2 FITG
Local Local
2 A0 0
.)
21 @ -2
=
R “
-
61 * -6 e
-8 -8
0 2 4 -6 -5 -4 -3
10 10 10 10 10 10 10
Hyperparameter training time [sec] Test time [sec]
6 SoD 6 SoD
. FITC FITC
Local Local
4 4
.
- -
2 ? 2
o =]
.
*e ple @
of = 0
-2 -2
0 1 2 3 4 - E -4 -3
10 10 10 10 10 10 10 10 10

Hyperparameter training time [sec]

Test time [sec]

13/20

.
4 4
SoD SoD
CHEM 3 FITC 3 FITC
Local Local
2 2
.
= =
o ! o !
S tde =
or ¢ 0
-1 -1
-2 -2
1 z 3 4 -5 -4 -3
10 10 10 10 10 10 10
Hyperparameter training time [sec] Test time [sec]
-05F ¢ 0.5 M
SoD SoD
SARCOS FITG FITG
-1 -1
- -
— —
2 .45 2 .45
-2 -2
1 z 3 4 -6 -4
10 10 10 10 10 10

Hyperparameter training time [sec] Test time [sec]

14/20

SYNTHZ2

SMSE

SYNTH¢

SMSE

SoD
FITC
Local

0 2 4
10 10 10

Hyperparameter training time [sec]

. SoD
. FITC
.8, Local
o l®
KON
e
.
.
3
B
U 1 z 3 4
10 10 10 10 10

Hyperparameter training time [sec]

SMSE

SMSE

SoD

- -5 -4 -3
10 10 10 10 10
Test time [sec]

. SoD
. FITC

- -5 -4 -3
10 10 10 10
Test time [sec]

15/20

. .
C H E M 0.9 0.9
w w
2 2
o 0.3 o 0.3
0.1 0.1
1 z 3 4 -5 -4 -3
10 10 10 10 10 10 10
Hyperparameter training time [sec] Test time [sec]
. | ..
!
SARCOS |
0.08
w
2
n 0.04
0.02
1 z 3 4 -6 -5 -4 -3
10 10 10 10 10 10 10 10
Hyperparameter training time [sec] Test time [sec]

16/20

Results: Conclusions

» SoD dominates FITC wrt hyperparameter learning
» FITC dominates SoD wrt test time
» Both SoD and FITC behaved monotonically with m

» The Local method is more variable, but can win for some
problems and cluster sizes. Non-monotonic time wrt m.

» IFGT only provided a speedup for SYNTH2

17/20

» Subset selection methods (e.g. IVM)

» Mix-and-match, e.g. train hyperparameters with SoD, then
use FITC at test time?

» Lower-level programming to improve Local for small m

18/20

Conclusions

» Assess approximate methods by quality obtained vs
compute time

» New methods should compare to standard baselines (e.g.
SoD, FITC)

» Paper available at http://homepages.inf.ed.ac.
uk/ckiw/online_pubs.html

» Code and data at http://homepages.inf.ed.ac.uk/
ckiw/code/gpr_approx.html

19/20

http://homepages.inf.ed.ac.uk/ckiw/online_pubs.html
http://homepages.inf.ed.ac.uk/ckiw/online_pubs.html
http://homepages.inf.ed.ac.uk/ckiw/code/gpr_approx.html
http://homepages.inf.ed.ac.uk/ckiw/code/gpr_approx.html

Carl Edward Rasmussen and

Chris Williams

MIT Press, 2006
www.GaussianProcess.org/gpml

Available free on the internet

Carl Edward Rasmussen and Christopher K. I, Williams

20/20

