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Gaussian Processes: from Prior to Posterior
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Marginal Likelihood

1 _ 1 n
log p(y|X, M) = —5y K,y — 5 log |Ky[ — 5 log(2r)
where K, = K + o2 1.

» This can be used to adjust the free parameters
(hyperparameters) of a kernel

» Prediction and evaluation of marginal likelihood are all
o(n®)
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Automatic Relevance Determination

kse(x,X') = 0% exp (— %(x —x')TM(x — x))

» Isotropic M = (2]
» ARD: M = diag(¢; 2, 4,2, ..., £5?) (cf Neal, 1996)
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The Nature of the Underlying Problem

» Complexity of target function (e.g. Fourier spectrum)
» Noise level
» Dimensionality of x space (intrinsic or apparent)
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Approximate GPR methods

» Subset of Data (SoD)
» keep m data points, simply throw away the rest
» select points randomly, or furthest point clustering
(Gonzales, 1985)
» Fully Independent Training Conditional (FITC)
» “absorb” all datapoints onto an m-dimensional predictor
» We choose inducing points U from the training set

ksor(Xi, X;) = k(x;, U)Ky k(U, x;)

Kere(Xi, X;) = Ksor(Xi, X;) + 0j[K(Xi, X;) — Ksor(Xi, X))]
» Local

» Create k data clusters: run GPR in each

» We devised Recursive Projection Clustering (RPC) to

obtain clusters of equal size

» Hyperparameters: joint across all clusters, or separate

» Each method has its associated marginal likelihood
approximation

6/20



» lterative methods and IFGT

» Use iterative solution of linear system (e.g. conjugate
gradients).

» Approximate each matrix-vector multiply (MVM) using IFGT.

» Slow for predictive variances

» Lots of other methods proposed, including:

» Exploit structure, e.g. Fourier methods for stationary
covariance functions and grid designs
» GPs — GRMFs (Lindgren, Rue, Lindstrém, 2011)



Comparison of space and time complexity

Method Storage Training Mean Variance
Full o(r?) on®)  O(n) O(n?)

SoD  O(m?) O(m?) O(m) O(m?)
FITC  O(mn) O(m?n) O(m) O(n?)
Local O(mn) O(m?n) O(m) O(m?)
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Computational phases

hyperparameter learning: The hyperparameters are learned,
by for example maximizing the log marginal
likelihood. This is often the most computationally
expensive phase.

training: Given the hyperparameters, all computations that
don’t involve test inputs are performed, such as
computing (K + ¢2/)~'y, and/or computing the
Cholesky decomposition of K + o21.

testing: Only the computations involving the test inputs are
carried out, those which could not have been done
previously. This phase may be significant if there
is a very large test set.
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Comparing Approximations

» Consider SMSE, MSLL as a function of training or
testing compute time

» Q: How to handle the hyperparameters?
» A: Let each method choose its own

» This is sensible for real-world data, as opposed e.g. to
synthetic data
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» Datasets
» SYNTH2 2-d GP; n = 30, 543 for training, same for test
» SYNTH8 8-d GP; n = 30,543 for training, same for test
» SARCOS D = 21, n = 44,484, plus 4,449 for testing
» CHEM D = 15, n = 31,536 for training, same for test

» Error measures

» standardized mean squared error (SMSE) on test set

» mean standardized log loss (MSLL) on test set
average p(y.«|D, x.) over test set, subtract same score for
trivial model which predicts mean and variance of training
set

» Which method do you think will do best?
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IFGT Results
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IFGT only provides useful speedups for SYNTH2
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SYNTHZ2
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Results: Conclusions

» SoD dominates FITC wrt hyperparameter learning
» FITC dominates SoD wrt test time
» Both SoD and FITC behaved monotonically with m

» The Local method is more variable, but can win for some
problems and cluster sizes. Non-monotonic time wrt m.

» IFGT only provided a speedup for SYNTH2
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» Subset selection methods (e.g. IVM)

» Mix-and-match, e.g. train hyperparameters with SoD, then
use FITC at test time?

» Lower-level programming to improve Local for small m
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Conclusions

» Assess approximate methods by quality obtained vs
compute time

» New methods should compare to standard baselines (e.g.
SoD, FITC)

» Paper available at http://homepages.inf.ed.ac.
uk/ckiw/online_pubs.html

» Code and data at http://homepages.inf.ed.ac.uk/
ckiw/code/gpr_approx.html
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